g10 — Smoothing in Statistics gl0abc

NAG C Library Function Document

nag smooth_spline fit (gl0abc)

1 Purpose

nag_smooth_spline fit (gl0abc) fits a cubic smoothing spline for a given smoothing parameter.

2 Specification

#include <nag.h>
#include <nagglO.h>

void nag_smooth_spline_fit(Nag_SmoothFitType mode, Integer n,
const double x[], const double y[], const double weightsl[],
double rho, double yhat[], double coeff[], double *rss, double *df,
double res[], double h[], double comm_ar[], NagError *fail)

3 Description

nag_smooth_spline fit fits a cubic smoothing spline to a set of n observations (z;, y;), fori =1,2,...,n.
The spline provides a flexible smooth function for situations in which a simple polynomial or non-linear
regression model is unsuitable.

Cubic smoothing splines arise as the unique real-valued solution function f, with absolutely continuous
first derivative and squared-integrable second derivative, which minimises:

S wlu— 1@ 4o [(@) d,
i=1 %

where w; is the (optional) weight for the ¢th observation and p is the smoothing parameter. This criterion
consists of two parts: the first measures the fit of the curve, and the second the smoothness of the curve.
The value of the smoothing parameter p weights these two aspects; larger values of p give a smoother
fitted curve but, in general, a poorer fit. For details of how the cubic spline can be estimated see
Hutchinson and de Hoog (1985) and Reinsch (1967).

The fitted values, § = (91, %2, - -, g)n)T, and weighted residuals, r;, can be written as:
y=Hy and r; = wi(yi—)

for a matrix H. The residual degrees of freedom for the spline is trace(/ — H) and the diagonal elements
of H, hj;, are the leverages.

The parameter p can be chosen in a number of ways. The fit can be inspected for a number of different
values of p. Alternatively the degrees of freedom for the spline, which determines the value of p, can be
specified, or the (generalised) cross-validation can be minimised to give p; see nag_smooth_spline estim
(gl0acc) for further details.

nag_smooth spline fit requires the x; to be strictly increasing. If two or more observations have the same
x; value then they should be replaced by a single observation with y; equal to the (weighted) mean of the y
values and weight, w;, equal to the sum of the weights. This operation can be performed by
nag_order data (glOzac).

The computation is split into three phases.
(1) Compute matrices needed to fit spline.
(2) Fit spline for a given value of p.

(3) Compute spline coefficients.

[NP3491/6] glOabc.1

gl0abc NAG C Library Manual

When fitting the spline for several different values of p, phase (1) need only be carried out once and then
phase (2) repeated for different values of p. If the spline is being fitted as part of an iterative weighted
least-squares procedure phases (1) and (2) have to be repeated for each set of weights. In either case, phase
(3) will often only have to be performed after the final fit has been computed.

The algorithm is based on Hutchinson (1986).

4

1:

Parameters
mode — Nag_SmoothFitType Input
On entry: indicates in which mode the routine is to be used.

If mode = Nag_SmoothFitPartial, initialisation and fitting is performed. This Partial fit can be
used in an iterative weighted least-squares context where the weights are changing at each call to
nag_smooth_spline fit or when the coefficients are not required.

If mode = Nag_SmoothFitQuick, fitting only is performed. Initialisation must have been
performed previously by a call to nag smooth spline fit with mode = Nag SmoothFitPartial.
This Quick fit may be called repeatedly with different values of rho without re-initialisation.

If mode = Nag SmoothFitFull, initialisation and Full fitting is performed and the function
coefficients are calculated.

Constraint: mode = Nag_SmoothFitPartial, Nag_SmoothFitQuick or Nag_SmoothFitFull.

n — Integer Input
On entry: the number of distinct observations, n.

Constraint: n > 3.

x[n] — const double Input
On entry: the distinct and ordered values z;, for i =1,2,...,n.

Constraint: x[i — 1] < x[i], for i =1,2,...,n— L

y[n] — const double Input

On entry: the values y;, for i =1,2,...,n.

weights[n] — const double Input

On entry: weights must contain the n weights, if they are required. Otherwise, weights must be set
to the null pointer (double*) 0.

Constraint: if weights are required, then weights[i — 1] > 0.0, for i = 1,2,... ,n.

rho — double Input
On entry: the smoothing parameter, p.

Constraint: rho > 0.0.

yhat[n] — double Output
On exit: the fitted values, ¢;, for : =1,2,...,n.

coeff[(n-1)*3] — double Input/Output

On entry: if mode = Nag SmoothFitQuick, coeff must be unaltered from the previous call to
nag_smooth spline fit with mode = Nag_ SmoothFitPartial. Otherwise coeff need not be set.

On exit: if mode = Nag_SmoothFitFull, coeff contains the spline coefficients. More precisely, the
value of the spline at ¢ is given by ((coeff[(i—1)x(n—1)+2]xd + coeff[(i—1)x(n—1)+1])xd +
coeff[(i—1)x(n—1)])d + ¢;, where z; <t < x;1; and d =t — x;.

gl0abc.2 [NP3491/6]

210 — Smoothing in Statistics gl0abc

10:

13:

5

If mode = Nag_SmoothFitPartial or Nag_SmoothFitQuick, coeff contains information that will
be used in a subsequent call to nag_smooth_spline fit with mode = Nag SmoothFitQuick.

rss — double * Output

On exit: the (weighted) residual sum of squares.

df — double * Output

On exit: the residual degrees of freedom.

res[n] — double Output

On exit: the (weighted) residuals, r;, for i = 1,2,...,n.

h[n] — double Output
On exit: the leverages, h;;, fort=1,2,... n.
comm_ar[9*n+14] — double Input/Output

On entry: if mode = Nag_SmoothFitQuick, comm_ar must be unaltered from the previous call to
nag smooth_spline fit with mode = Nag_SmoothFitPartial. Otherwise comm_ar is used as
workspace and need not be set.

On exit: if mode = Nag SmoothFitPartial or Nag SmoothFitQuick, comm_ar contains
information that will be used in a subsequent call to nag smooth spline fit with mode =
Nag_SmoothFitQuick.

fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT_ARG_LT

On entry, n must not be less than 3: n = <value>.

NE_REAL_ARG_LT

On entry, rho must not be less than 0.0: rho = <value>.

NE_BAD PARAM

On entry, parameter mode had an illegal value.

NE_REAL_ARRAY_CONS

On entry, weights[<value>] = <value>.

Constraint: weights[i] > 0, for i =0,1,...,n— L.

NE_NOT_STRICTLY_INCREASING

The sequence x is not strictly increasing: x[<value>] = <value>, X[<value>] = <value>.

NE_INTERNAL_ERROR

6

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

Further Comments

The time taken by the routine is of order n.

[NP3491/6] g10abc.3

gl0abc NAG C Library Manual

Regression splines with a small (< n) number of knots can be fitted by nag_1d_spline fit knots (e02bac)
and nag_1d spline_fit (e02bec).

6.1 Accuracy

Accuracy depends on the value of p and the position of the x values. The values of x; — x;_| and w; are
scaled and p is transformed to avoid underflow and overflow problems.

6.2 References
Hastie T J and Tibshirani R J (1990) Generalized Additive Models Chapman and Hall

Hutchinson M F (1986) Algorithm 642: A fast procedure for calculating minimum cross-validation cubic
smoothing splines ACM Trans. Math. Sofiware 12 150153

Hutchinson M F and de Hoog F R (1985) Smoothing noisy data with spline functions Numer. Math. 47
99-106

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177-183

7 See Also

nag_smooth_spline_estim (glOacc)
nag_order data (gl0zac)

nag_1d spline fit knots (e02bac)
nag 1d_spline fit (e02bec)

8 Example

The data, given by Hastie and Tibshirani (1990), is the age, z;, and C-peptide concentration (pmol/ml), y;,
from a study of the factors affecting insulin-dependent diabetes mellitus in children. The data is input,
reduced to a strictly ordered set by nag order data (gl0zac) and a spline is fitted by nag_smooth_spline_fit
with p = 10.0. The fitted values and residuals are printed.

8.1 Program Text

/* nag_smooth_spline_fit (glOabc) Example Program.
*

* Copyright 2000 Numerical Algorithms Group.
*

* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagglO.h>

int main (void)
{

char mode[2], weight[2];

double *coeff=0, df, *h=0, *res=0, rho, rss, *comm_ar=0, *weights=0, *wtptr,
*wwt=0;

double *x=0, *xord=0, *y=0, *yhat=0, *yord=0;

Integer i, n, nord;

Integer exit_status=0;

NagError fail;

Nag_SmoothFitType mode_enum;

gl0abc.4 [NP3491/6]

210 — Smoothing in Statistics

INIT FAIL(fail);

Vprintf ("glOabc Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[*\nl]");

Vscanf ("%1d", &n);

if (! (coeff = NAG_ALLOC((n-1)*3, double))

|| !(h = NAG_ALLOC(n, double))
|| !(res = NAG_ALLOC(n, double))
|| !'(x = NAG_ALLOC(n, double))
|| !(y = NAG_ALLOC(n, double))
[
|| !(xord = NAG_ALLOC(n, double)

(

(

(

(

[l !(yord NAG_ALLOC(n, double)
|| !(wwt = NAG_ALLOC(n, double))
|| !(yhat = NAG_ALLOC(n, double)

|| !'(comm_ar = NAG_ALLOC(9*n+14,

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

Vscanf (" %s %s ", mode, weight);
if (*mode == 'P’)

mode_enum = Nag_SmoothFitPartial;
else if (*mode == 'Q")

mode_enum = Nag_SmoothFitQuick;
else if (*mode == 'F’)

mode_enum = Nag_SmoothFitFull;
else

)
)

)

weights = NAG_ALLOC(n, double))

double)))

mode_enum =

Vscanf ("%1f",

(Nag_SmoothFitType)-999;

&rho) ;

if (*weight == 'U’)

{

for (i = 1; i <= n; ++1i)
Vscanf ("$1f %1f ", &x[i - 11, &ayl[i - 11);
wtptr = 0O;
}
else
{
for (i = 1; i <= n; ++1i)

Vscanf ("%1f %1f %1f",

wtptr = weights;

b

&x[i - 11, &ayli - 1], &weights[i - 1]);

/* Sort data into increasing X and */
/* remove tied observations and weight accordingly */

glOzac(n, x,

y, wtptr, &nord,

xord, yord, wwt, &rss,

&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from glOzac.\n%s\n", fail.message);
exit_status = 1;
goto END;

/* Fit cubic

[NP3491/6]

spline */

gl0abc

gl0abc.5

gl0abc

NAG C Library Manual

glOabc(mode_enum, nord, xord, yord, wwt, rho, yhat, coeff,
&rss, &df, res, h, comm_ar, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from glOabc.\n%s\n", fail.message);
exit_status = 1;
goto END;

/* Print results */

Vprintf ("\n") ;
Vprintf ("%$s%10.3f\n", " rho =", rho);
Vprintf ("\n") ;
Vprintf ("$s%10.3f\n", " Residual sum of squares
Vprintf ("%$s%10.3f\n", " Degrees of freedom
Vprintf ("\n")
Vprintf ("%s \n" " Ordered input data
Vprintf ("\n") ;
Vprintf("%s\n " X Y
Vprintf ("\n")
for (i = 1; i <= nord; ++1i)
{
Vprintf ("%8.4f %8.4f %8.4f\n",

xord[i - 1],
yord[i - 11,
yhat[i - 11);

}
END:
if (coeff) NAG_FREE (coeff);
if (h) NAG_FREE(h);
if (res) NAG_FREE(res);
if (x) NAG_FREE (x);
if (y) NAG_FREE(y);
if (weights) NAG_FREE (weights);
if (xord) NAG_FREE (xord);
if (yord) NAG_FREE(yord);
if (wwt) NAG_FREE (wwt) ;
if (yhat) NAG_FREE (yhat) ;

if (comm_ar) NAG_FREE (comm_ar) ;

return exit_status;

8.2 Program Data

glOabc Example Program Data

43
F U
10.0
5.2 4.8 8.8 4.1 10.5 5.2 10.6 5.5 10.4 5.0
1.8 3.4 12.7 3.4 15.6 4.9 5.8 5.6 1.9 3.7
2.2 3.9 4.8 4.5 7.9 4.8 5.2 4.9 0.9 3.0
11.8 4.6 7.9 4.8 11.5 5.5 10.6 4.5 8.5 5.3
11.1 4.7 12.8 6.6 11.3 5.1 1.0 3.9 14.5 5.7
11.9 5.1 8.1 5.2 13.8 3.7 15.5 4.9 9.8 4.8
11.0 4.4 12.4 5.2 11.1 5.1 5.1 4.6 4.8 3.9
4.2 5.1 6.9 5.1 13.2 6.0 9.9 4.9 12.5 4.1
13.2 4.6 8.9 4.9 10.8 5.1
gl0abc.6

, rss);
", df);

Output results");

Fitted Values");

[NP3491/6]

210 — Smoothing in Statistics

8.3 Program Results

glOabc Example Program Results

rho =

Residual sum of squares
Degrees of freedom

Ordered input data

X

.9000
.0000
.8000
.9000
.2000
.2000
.8000
.1000
.2000
.8000
.9000
.9000
.1000
.5000
.8000
.9000
.8000
.9000
.4000
.5000
.6000
.8000
.0000
.1000
.3000
.5000
.8000
.9000
.4000
.5000
.7000
.8000
.2000
.8000
.5000
.5000
.6000

O W WWOMmMOM-=-ZIOU T U EBMNRRRO

PR R R RRRRRERRRRRERERERE P
MU d WWNNNMNNRRRRREREREOOODO

SO 0w oy w0 000D DD OO 00D DWW W W W

10.000

Y

.0000
.9000
.4000
.7000
.9000
.1000
.2000
.6000
.8500
.6000
.1000
.8000
.2000
.3000
.1000
.9000
.8000
.9000
.0000
.2000
.0000
.1000
.4000
.9000
.1000
.5000
.6000
.1000
.2000
.1000
.4000
.6000
.3000
.7000
.7000
.9000
.9000

11.288
27.785

Output results

Fitted Values

SO DR R D DR D D DR DR DD DR S DD DR DD DD DD D OO DR DD WWWWW

.3674
.4008
.6642
.7016
.8214
.5265
.6471
.7561
.7993
.0458
.1204
.9590
.9262
.8595
.8172
.8095
.8676
.8818
.9445
.9521
.9572
.9613
.9614
.9618
.9623
.9568
.9338
.9251
.8943
.8944
.9051
.9138
.9239
.8930
.9938
.9773
.9682

gl0abc

[NP3491/6]

gl0abc.7 (last)

